139-6821-0595
一、化学回收技术发展历史
(一)起始阶段
1.20世纪60年代:废塑料化学回收的历史可以追溯到20世纪60年代。当时全世界发生能源恐慌,美国、欧洲和日本等发达*和地区开始研究将产品回收起来的方法,借此节约和替代一部分石油,这是循环经济的早期雏形。
2.20世纪70年代:因为战争等原因,油价上涨,引发石油危机。仍是美国、欧洲和日本等发达*和地区,试图提高原油利用率,从而诞生了一些技术和研究,尤其在自然资源匮乏、危机意识强烈的日本,甚至出现过一些小型的工业化装置。
3.20世纪80年代:80年代的中东战争导致第二次石油危机,当时*次出现“废塑料催化裂解技术”的研究成果。
(二)扩散阶段
1.20世纪90年代:战争导致三次石油危机,油价再次上涨,再一次引起世界对石油安全和石油利用率的担忧,因为石油价格提升和产量减少产生的经济驱动力,人们想把塑料回收起来。中国也产生一些小型装置,现称之为“土法炼油”,多以个体户形式存在,产品品质差、环境污染高。
2.21世纪初:21世纪伊始至经济危机前,油价持续上涨,同时美国、欧洲和日本等发达*和地区面临严重的白色污染。当时垃圾处理的核心发展方式是焚烧减量,顺带可解决一部分塑料问题,因为废塑料化学回收的收益不高,所以商业化方面没有突破。同时2007年发生一个重要事件,*环保总局(现生态环境部)发布《废塑料回收与再生利用污染控制技术规范》,明文规定“不宜以废塑料为原料炼油”,将“土法炼油”一棍打死,废塑料化学回收的研究和工业化陷入谷底。
(三)提速阶段
21世纪10年代至今:艾伦·麦克阿瑟基金会促成了品牌、零售和包装等巨头企业的全球承诺,这些企业涵盖了全世界20%以上的塑料使用量,终结塑料废弃物联盟(AEPW)也促使国际化工巨头解决塑料污染的问题。这些企业的CEO承诺目标,“可持续”由过去的口号变成了真实的战略目标,由可持续发展部门推动目标的达成,这是真实的动力。
二、废塑料化学回收技术分类
(一)化学回收的定义
严格意义上讲,“化学回收”是“化学循环”的*步,是塑料循环产业链的前半部分。化学循环是将塑料废弃物经过一系列的化学反应重新生成塑料和其他有价值的化学品的过程,那么化学回收则是将塑料废弃物经过一系列的化学反应生成油、气、炭等中间化学品的过程。
(二)回收技术分类
1.过氧化法:即焚烧发电,可处理所有类型废塑料,由氧气完全参与,碳和氢分别生成二氧化碳和水,产出热能导入电力系统。
2.部分氧化法:适用于聚烯烃类废塑料,有氧气部分参与,生成合成气,产品导入煤化工制甲醇和氨气等。
3.无氧裂解法:适用于聚烯烃类废塑料,一是液化工艺,主要有热解、催化裂解和加氢裂解三种类型,热解一般产出重油和蜡,催化裂解可产出轻油,产出物均可导入石油化工制燃料或化工产品(如塑料);二是炭化工艺,可产出焦炭、活性炭或RDF,产品可导入炼焦化工制功能碳(如纳米碳)。
4.解聚法:或称萃取法,适用于缩聚类塑料,有醇解、水解、溶剂解等类型,可产出单体(如DMT、PTA、CPL等),产品可导入化纤和塑料产业制化纤和塑料。
(三)常用工艺讲解
目前使用最多的是液化工艺,主要有以下三种类型
1.热裂解:这是市面上常见和主要探讨的技术。温度500~800℃,温度过高会导致原料大量气化;由于没有催化剂参与,且温度较高,塑料分子无序拆解、无序组合,因此产物链条较长,一般主要为重质燃料油和蜡,含有少量轻组分;重油可做远洋货轮和锅炉燃料使用。橡胶炼油常用热裂解,因橡胶为单一材料,比较好处理,而塑料垃圾为混合材料,且含有大量添加剂,热解通常会产生结焦。
2.催化裂解:反应有两段,*段切断分子链,第二段重组为轻质油;有催化剂参与,切割和重组过程有序进行,因此产出物可控,催化剂也使得化学反应效率提升数百倍甚至更多,因此温度低于热裂解;后续技术迭代,可以做到乙烯、丙烯和BTX单体。目前根据公开信息推测,日本和美国的企业在催化裂解方面并没有重大的落地项目突破。
3.加氢裂解:加氢成本高昂,可能是由于经济性较差,导致该项技术没有普及。
三、聚烯烃类废塑料化学回收技术代际
代际划分的标准是催化深度,这是由人工,到机械,再到热、化学和复杂化学的进化过程,热解是化学回收的初级阶段。将废塑料转化成高品质产品的,一定是极其复杂的化学反应。很难想象,仅用解热的方式就能从石油里提炼出高价值产物。分类不一定准确,还请业内人士指教。
(一)原始阶段
就是土法炼油,已经被*禁止。处理橡胶和轻度混合的塑料,产出重油和蜡。
(二)*代
釜式热裂解,没有催化剂,明火加热,处理橡胶和轻度混合的塑料,产出重油和蜡。曾经在山东、河南等地大规模盛行。
(三)第二代
1.管式热裂解:处理橡胶和轻度混合的塑料,反应深度不够,产出轻油(少量)、重油和蜡。
2.溶剂热裂解:用有机溶剂(如重油)加热融化塑料并进行裂解,处理轻度混合的塑料,产出轻油(少量)、重油和蜡。
3.超临界水热裂解:在高温高压下,用介于气态和液体中间状态的水作为加热载体,同时这种水也会起到微催化作用,处理重度混合的塑料,产出轻油(少量)、重油和蜡。
4.釜式催化裂解催化重组:催化效果不错,可处理中度混合的塑料,由于热效率有限,产物中还有少量重组分。
(四)第三代
第三代以后,产物就不应该有重油组分了,而且可以处理重度混合的塑料,包含其他有机质和杂质。
(五)第四代
运用气体介质内热的加热方式,效率高,一条线日产能可上百吨。处理重度混合的塑料,产出轻油。
(六)第五代
催化裂解烯烃重组,处理重度混合的塑料,可直接产出单体,距离聚合物仅有一步聚合。科茂已过中试。
四、技术经济性核心要素
一项技术是否具有经济性,要把投入和产出拆解开来详细探讨。
(一)产出要素
1.产品价格:热解产出的重油价格在1500~2000元之间。催化裂解催化重组技术产出的塑料油(轻汽柴油)价格比重油高得多,若用于生产循环塑料,则有更高溢价。
2.高价值产品收率:因为有催化剂的参与,反应效率更高,催化裂解催化重组技术的高价值油品收率会高于热裂解。
3.单条线日产能(连续性):欧洲一些做得不错的企业,实际上不是连续生产,而是釜式生产,先将反应釜加热,反应完全后降温排渣,之后再进料加热,因此能耗很高,投资较大。第3代以后的催化裂解催化重组技术可实现连续生产,因此能耗及投资较低。
(二)投入要素
1.设备投资:如果对原料要求高、反应条件高、进料和反应不连续,设备投资就会高。催化裂解催化重组技术对原料要求低、反应条件低、工艺流程短,设备投资低。
2.运营能耗:温度高意味着能耗高。生产所需温度上升100℃,每吨塑料能耗成本可能会增加100~150元,同时对设备的要求和投资成本也会上升。催化裂解催化重组技术所需温度较低,因此能耗成本较低。
3.进料要求和预处理:如果对进料要求高,比如只能处理单一塑料,或者需要清洗、预处理等等,都意味着更多的投资。催化裂解催化重组技术对进料要求较低,不需精分和清洗,且预处理简单,因此投资较低。
4.催化剂生产和处理:催化剂有成千上万种,在石油炼化行业,许多催化剂含有贵金属和重金属,成本高昂,而且如果重金属催化剂进入尾渣,尾渣会被判定为危废,后续处理费用同样很高。科茂催化裂解催化重组技术所用的催化剂无贵金属和重金属,对环境无害,可以回收。
五、发展较快的塑料化学回收企业
根据部分公开信息显示(投资和承购协议等),目前发展较快的废塑料化学回收企业大致有上面几家。中国的技术一点都不差,只是政策方面没那么积极,但现在已经开始有动作了。随着政策的放开,市场会逐渐打开。
以上是个人基于部分公开信息的初步判断,若有错误,请大家批评指正。
六、废塑料化学回收的政策环境
(一)供需及技术政策分析
化学回收具备产物需求政策、原料可得性和成本政策以及技术支持政策,我们可以判断出化学回收的政策空间正在打开。
1.欧洲方面:欧盟塑料战略、英德等国塑料及包装税立法,比如英国立法少于30%的再生塑料包装的税率为每吨200英镑。通过税收及政策打开了化学回收PCR塑料的需求空间。
2.中国方面:垃圾分类、无废城市、塑料污染管理和碳中和等相关目标,塑料垃圾越来越容易获得,使得低成本废塑料原料的可得性越来越强。
3.技术政策:环保部正在制定《废塑料污染控制技术规范》,拟支持用化学回收将废塑料转化为单体、裂解油作为废塑料资源化的技术方向,相较于过去“不宜以废塑料为原料炼油”的时代,已产生极大转变,相当于打开了一个风口。广东省明文规定“支持鼓励废塑料裂解等新型资源化能源化利用技术应用”,其他地区暂无明文规定,但并不妨碍相关项目的推进,这代表化学回收技术逐渐被认可和支持。
(二)我国关键政策分析
1.垃圾分类:一是使低值废塑料能够低成本、高效率地从垃圾中分拣出来,二是促进了观念转变,由过去“低值废塑料是垃圾”到现在“低值废塑料是资源”。以干湿分离为例,除上海外,大部分实行垃圾分类的城市的湿垃圾中都有塑料,目前不少地区已经在把湿垃圾中的塑料分离出来,意味着处理湿垃圾中塑料垃圾的市场便慢慢成长起来。同时,干湿分离后,干垃圾变得干净,可回收性增强,意味着对干垃圾进行分选和回收的投资变得更有价值。过去对干垃圾进行分选可能是不划算的,但现在通过把干垃圾中占比20%以上的废塑料挑出来进行化学回收,产生的高价值收益可以补贴前端的分选环节,使得垃圾分选的可行性进一步增强。还有,政府对低值废塑料是资源的认知越来越清晰、目标越来越明确,自然而然的结果就是推进了塑料垃圾的回收。
2.垃圾资源化回收目标:2021年5月,发改委发布的《“十四五”城镇生活垃圾分类和处理设施发展规划》中明确提出目标,“到2025年底,全国城市生活垃圾资源化利用率达到60%以上(除去焚烧)”,但这个目标比较模糊。欧盟的目标则很细化,要求除去焚烧垃圾回收利用率要达到65%,塑料包装的回收利用率要达到55%。目标明确后,为了完成绩效,政府会通过税收政策等手段主动推进塑料回收,欢迎塑料回收的主体进入,塑料回收的市场空间就被打开。
3.政府补贴税收支持方向:欧洲很多*和地区会补贴智能垃圾分选厂,政府希望开源节流,“开源”即充分资源化,让垃圾产生更多收益,“节流”即减少焚烧,因为焚烧需要付费。目前我国正处于鼓励垃圾从填埋到焚烧的阶段,但我们相信未来我国也会逐渐开始支持垃圾分选厂,自然而然的结果就是垃圾减量化和资源化。分选出的塑料需要处理,政府会投资或者补贴塑料处理,那么塑料原料的供给将会变得便宜且充足。无论是垃圾分类还是资源化目标,本质都是借助商业之外的力量帮忙塑料回收企业降低获得塑料垃圾的难度和成本。
(三)垃圾处理政策导向
1.整体性落后:目前我国还处于鼓励焚烧的阶段,而在日本、欧洲等发达*和地区,则鼓励从焚烧向资源化过渡。
2.区域发展不均衡:我国东部地区垃圾焚烧比例很高,市场已经饱和,接下来会走资源化道路,其他地区则相对落后,发达*和发展中*的垃圾处理状态在我国同时出现,区域发展不均衡。
3.资源化趋势:整体上看,我国的垃圾处理开始从焚烧向资源化转变,大量政府部门和政策开始探讨资源化,整个垃圾资源化产业,包括塑料物理循环和化学循环,将会进入一个快速上升的通道。可以畅想一下,未来每个城市都可能会有化学循环工厂,垃圾焚烧厂出现的地方,可能就会有塑料化学循环工厂,按照城市规模和垃圾体量不同,工厂的处理能力从万余吨级到百万吨级都会存在,我们对此抱有极大的信心。